Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 35(3-4): 104-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062752

RESUMO

Recombinant adeno-associated virus (rAAV) is a prominent viral vector currently available for human gene therapy. The diameter of the rAAV capsid is ∼25 nm, and a positive or negative single-stranded DNA is packaged within the vector capsid. In this report, we describe a concise method to examine the extracted rAAV genome using an automated electrophoresis system. The rAAV genome, prepared from vector particles through either heat treatment at 95°C for 10 min or the phenol-chloroform extraction method, was analyzed using an automated electrophoresis system under denaturation conditions. The heat treatment protocol demonstrated a comparable yield with the phenol-chloroform extraction protocol, and the quantified amounts of the rAAV genome obtained using the automated electrophoresis system were consistent with those quantitated by quantitative PCR. Additionally, crude rAAV extractions could also be analyzed by the automated electrophoresis system after DNase I treatment. These results indicated that this simple and quick analysis using automated electrophoresis is highly useful for confirming the purity and integrity of the rAAV genome.


Assuntos
DNA de Cadeia Simples , Dependovirus , Humanos , DNA de Cadeia Simples/genética , Dependovirus/genética , Clorofórmio , Vetores Genéticos/genética , Eletroforese , Fenóis
2.
Hum Gene Ther ; 34(11-12): 578-585, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058356

RESUMO

Recombinant adeno-associated virus (rAAV) is a viral vector commonly used in gene therapy. Residual host cell DNA is an impurity that has been associated with the risk of infection and oncogenicity. Thus, it needs to be monitored for quality control. We aimed to develop a droplet digital polymerase chain reaction (ddPCR) method targeting 18S ribosomal RNA (rRNA) genes to quantitate residual host cell DNA. The copy number of the 18S rRNA gene was determined using two sets of primer pairs for 116- and 247-bp amplicons sharing the C-terminus. For conversion of the copy number of the 18S rRNA gene into the mass concentration of genomic DNA, the accurate copy number of 18S rRNA genes in HEK293 genomic DNA was determined by comparison with copy numbers of three reference genes (EIF5B, DCK, and HBB). Results showed that 88.6-97.9% of HEK293 genomic DNA spiked into rAAV preparations was recovered. The ddPCR-based assay was applied to rAAV preparations to quantitate residual host cell DNA as an impurity. Our findings indicate that the assay can be used for the quantitation and size distribution of residual host cell DNA in rAAV products.


Assuntos
DNA , Dependovirus , Humanos , Dependovirus/genética , Células HEK293 , Reação em Cadeia da Polimerase/métodos , Vetores Genéticos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Microb Biotechnol ; 15(9): 2364-2378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656803

RESUMO

In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro-leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single-amino-acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis-sorting of secretory protein into vacuoles among the wild-type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.


Assuntos
Proteínas Fúngicas , Pichia , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Mutação , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteólise , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales
4.
Commun Biol ; 5(1): 561, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676418

RESUMO

Expression of secreted recombinant proteins burdens the protein secretion machinery, limiting production. Here, we describe an approach to improving protein production by the non-conventional yeast Komagataella phaffii comprised of genome-wide screening for effective gene disruptions, combining them in a single strain, and recovering growth reduction by adaptive evolution. For the screen, we designed a multiwell-formatted, streamlined workflow to high-throughput assay of secretion of a single-chain small antibody, which is cumbersome to detect but serves as a good model of proteins that are difficult to secrete. Using the consolidated screening system, we evaluated >19,000 mutant strains from a mutant library prepared by a modified random gene-disruption method, and identified six factors for which disruption led to increased antibody production. We then combined the disruptions, up to quadruple gene knockouts, which appeared to contribute independently, in a single strain and observed an additive effect. Target protein and promoter were basically interchangeable for the effects of knockout genes screened. We finally used adaptive evolution to recover reduced cell growth by multiple gene knockouts and examine the possibility for further enhancing protein secretion. Our successful, three-part approach holds promise as a method for improving protein production by non-conventional microorganisms.


Assuntos
Saccharomycetales , Técnicas de Inativação de Genes , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Fluxo de Trabalho
5.
ACS Synth Biol ; 11(2): 644-654, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35094517

RESUMO

The methylotrophic yeast species Komagataella phaffii (synonym: Pichia pastoris) is widely used as a host for recombinant protein production. Although several genetic engineering techniques are being employed on K. phaffii, advanced methods such as in vivo DNA assembly in this yeast species are required for synthetic biology applications. In this study, we established a technique for accomplishing one-step in vivo assembly of multiple DNA fragments and genomic integration in K. phaffii. To concurrently achieve an accurate multiple DNA assembly and a high-efficient integration into the target genomic locus in vivo, a K. phaffii strain, lacking a non-homologous end joining-related protein, DNA ligase IV (Dnl4p), that has been reported to improve gene targeting efficiency by homologous recombination, was used. Using green fluorescent protein along with the lycopene biosynthesis, we showed that our method that included a Dnl4p-defective strain permits direct and easy engineering of K. phaffii strains.


Assuntos
Genômica , Pichia , DNA , Engenharia Genética , Pichia/genética , Saccharomycetales
6.
Nucleic Acids Res ; 48(22): 13000-13012, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257988

RESUMO

In the yeast Saccharomyces cerevisiae, terminator sequences not only terminate transcription but also affect expression levels of the protein-encoded upstream of the terminator. The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has frequently been used as a platform for metabolic engineering but knowledge regarding P. pastoris terminators is limited. To explore terminator sequences available to tune protein expression levels in P. pastoris, we created a 'terminator catalog' by testing 72 sequences, including terminators from S. cerevisiae or P. pastoris and synthetic terminators. Altogether, we found that the terminators have a tunable range of 17-fold. We also found that S. cerevisiae terminator sequences maintain function when transferred to P. pastoris. Successful tuning of protein expression levels was shown not only for the reporter gene used to define the catalog but also using betaxanthin production as an example application in pathway flux regulation. Moreover, we found experimental evidence that protein expression levels result from mRNA abundance and in silico evidence that levels reflect the stability of mRNA 3'-UTR secondary structure. In combination with promoter selection, the novel terminator catalog constitutes a basic toolbox for tuning protein expression levels in metabolic engineering and synthetic biology in P. pastoris.


Assuntos
Estabilidade de RNA/genética , RNA Mensageiro/genética , Saccharomycetales/genética , Regiões Terminadoras Genéticas/genética , Regulação Fúngica da Expressão Gênica/genética , Engenharia Metabólica , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Biologia Sintética
7.
Planta ; 238(4): 753-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23873395

RESUMO

The oncogenic 6b gene of Agrobacterium tumefaciens induces a number of morphological and metabolic alterations in plants. Although molecular functions associated with the 6b genes have been proposed, including auxin transport, sugar transport, transcriptional regulation, and miRNA metabolism, so far an unequivocal conclusion has not been obtained. We investigated the association between auxin accumulation and tumor development of the tobacco seedlings expressing the AK-6b gene under the control of the dexamethasone-inducible promoter. Indole-3-acetic acid (IAA) localization was examined by immunochemical staining with monoclonal antibody against IAA and by histochemical analysis using the IAA-specific induced construct, DR5::GUS (ß-glucuronidase). Both procedures indicated that IAA preferentially accumulated in the tumorous protrusions as well as in newly developing vascular bundles in the tumors. Furthermore, true leaves also showed abaxial IAA localization, leading to altered leaves in which the adaxial and abaxial identities were no longer evident. Co-localization of cytokinin and auxin in the abaxial tumors was verified by immunochemical staining with an antibody against cytokinin. Treatment of AK-6b-seedlings with N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport, promoted the morphological severity of phenotypes, whereas 1-naphthoxyacetic acid, a specific auxin influx carrier inhibitor, induced tumor regression on cotyledons and new tumorous proliferations on hypocotyls. Prominent accumulation of both auxin and cytokinin was observed in both regressed and newly developing tumors. We suggest from these results that modulation of auxin/cytokinin localization as a result of AK-6b gene expression is responsible for the tumorous proliferation.


Assuntos
Agrobacterium tumefaciens/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Tumores de Planta/etiologia , Genes Reporter , Glicolatos , Ftalimidas , Plântula/metabolismo , /microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...